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SUMMARY

A local mesh re�nement virtual boundary method based on a uniform grid is designed to study the
transition between the �ow patterns of two spheres in tandem arrangement for Re=250. For a small
gap (L=D=1:5), the �ow �eld is axisymmetric. As the spacing ratio increases to 2.0, the pressure
gradient induces the circumferential �uid motion and a plane-symmetric �ow is constructed through a
regular bifurcation. For L=D ¿ 2:5, the vortices are periodically shed from the right sphere, but the
planar symmetry remains. The case for L=D=3:0 is picked up to give a detail investigation for the
unsteady �ow. The shedding frequency of vortical structure from the upper side of the right sphere is
found to be double of the frequency of the lower side. With the �ow spectra of various gaps given,
the underlying competitive mechanism between the two shedding frequencies is studied and a critical
spacing gap is revealed. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The �ow past a sphere is a fundamental problem in �uid dynamics. Although a sphere is the
simplest geometry, a lot of natural and engineering applications exist, such as air pollution,
combustion system and chemical processes, etc. The physical behaviour of the �ow past a
single sphere has been studied experimentally by some researchers (see References [1–3])
and the transitions between di�erent �ow regimes were revealed, described as follows. The
�ow begins to separate from the surface to form a stable and axisymmetric toroidal vortex at
Re=24, where Re is de�ned in terms of the uniform �ow velocity and the diameter of the
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sphere. As the Reynolds number increases, the �ow changes to an asymmetric but stable �ow
through a kind of regular bifurcation at Re=210 and the �ow �eld is characterized with the
so-called double-threads wake. An unstable oscillating �ow is achieved at Re¿270 and the
hairpin-shaped vortices are periodically shed from the rear of the sphere.
Since 1990s, a number of numerical simulations for �ow past a single sphere have been

performed. But being restricted by the speed of CPU, the storage capacity and the mathematic
algorithm, the assumption of axisymmetric �ow that is incorrect for Re¿210 had to be made
in the most simulations. Only recently, the primitive 3D unsteady Navier–Stokes equations
were solved by Johnson and Patel [4] and Sungsu [5] to simulate the �ow of a single sphere
and their results compare well with previous experimental observations.
A little experimental work has been carried out for the investigation of the interaction of the

wakes of two spheres in various arrangements. In early 1980s, some qualitative experimental
results for �ow past two or three spheres were achieved by Tsuji et al. [6]. The latest
experimental study about wakes of two spheres placed side-by-side was done by Schouveiler
et al. [7] and distinctly di�erent regimes of interactions were observed, depending on the gap
between two spheres.
In our knowledge, due to the di�culty in grid generation for the multiple-connected domain,

no numerical method based on �nite di�erence has been reported to successfully simulate the
full �ow past two or more spheres. To avoid this obstacle, for �ow past two spheres placed
side-by-side at low Reynolds numbers, a certain symmetry was assumed and the computational
domain was reduced to only one quarter of an ellipsoid-like �eld by Kim and Elghobashi [8].
Thus, the calculation was performed on a simple-connected domain containing only one quarter
of a single sphere and the dependence of the force on the distance between the two spheres
and the vortex structure in the gap were investigated.
In our study, the virtual boundary method �rst presented by Goldstein et al. [9] was

extended to a 3D application; then the 3D version was improved to handle local grid
re�nement by the implementation of a modi�ed multigrid method. In our computations, the
solution is predicted to vary rapidly in the boundary layers and a su�ciently �ne grid system
is required to precisely solve the �ow in such region. Some test cases of our computations
proved that a huge number of meshes have to be solved for a good resolution of boundary
layer, which is not a feasible simulation for current computer capacity. A nonuniform grid is
a suggested remedy. But in the context of �nite di�erence technique, uneven grid size leads
to more complex computer codes and more expensive costs which departs from the original
spirit of the virtual boundary method on uniform Cartesian grid. Indeed, the local re�nement
virtual boundary method will give a good resolution in the boundary layers without losing
the high performance. The currently modi�ed virtual boundary method is used to study the
interaction between the upstream and the downstream wake.

2. NUMERICAL METHOD

2.1. Virtual boundary method

The so-called virtual boundary method based on a uniform grid was �rst presented by Gold-
stein to model a no-slip boundary in �ow �eld. The solid domain is assumed to be �lled
with �uid and a virtual force �eld is introduced into the Navier–Stokes equations, such that

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:465–488
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a desired velocity distribution can be assigned to the �uid points on no-slip boundary. The
virtual force �eld introduced in his work is governed by the following feed-back loop:

F(xs; t)= �
∫ t

0
[u(xs; �)− v(xs; �)] d�+ �[u(xs; t)− v(xs; t)] (1)

where � and � are two negative constants, xs denotes a boundary point and u(xs; t) is the
�uid velocity at xs; the velocity of the solid boundary point itself is v(xs; t). By using a
pseudo-spectral method, Goldstein applied this procedure to simulate a start up �ow around
a stationary cylinder. To precisely de�ne the no-slip boundary condition, large enough |�|
and |�| are needed, which unfortunately makes the governing equations sti� and the stability
limit rigid. A Courant–Friedrichs–Lewy (CFL) number with an order of 10−3 is used in
Goldstein’s simulation. The expensive time cost makes the simulation of �ow in complex
geometry impossible. Therefore, an alterative expression for the virtual force of a no-slip
boundary was provided by Fadlun et al. [10]

Fn+1 =−RHSn + v
n+1 − un
�t

(2)

where vn+1 is the velocity of solid boundary point at the next time level t+�t, and un is the
corresponding �uid velocity at t time level; the term RHSn contains the convective, viscous
and pressure gradient terms in momentum equation at t time level. Thus, at every time level
the boundary condition can be de�ned exactly and no rigid stability limit is resulted in with
the virtual force Equation (2) introduced into the Navier–Stokes equations.
In order to represent the boundary in the �ow problem with complex geometry, Goldstein

got a step-surface resulting from applying the body force only to the grid sites near the
boundary and the values of physical properties needed to compute virtual force can be obtained
directly from the �ow �eld. In Fadlun’s code, the velocity at the �rst grid point outside the
body is obtained by linearly interpolating the velocity at the second point and the velocity at
the body surface. Then the virtual force is computed for the �rst grid point in the �ow �eld
with the interpolated values.
In our computation, the boundary is de�ned following the approach provided by Saiki and

Biringen [11]. We represent the sphere surface in a manner independent of the grid sites. The
schematic distribution of virtual points on surface is shown in Figure 1 (actually there are
more than 86 000 virtual points on the sphere). Thus, a kind of interpolation procedure would
be needed to exchange the information between the virtual points and the adjacent grid points.
Here, the �uid velocity at a virtual point is interpolated from the 8 adjacent grid points using
a trilinear scheme in three dimensions

u(xs)=
8∑
m=1
Nm(xs)um (3)

where the numbering of the velocities on grid points and the weights is given in Figure 2.
In Figure 2, (�; �; �) denote the local transformational coordinates. The expression of the
weight values in 8 grid points can be written as

Nm= 1
8(1 + �m�)(1 + �m�)(1 + �m�) (4)
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Figure 1. Distribution of virtual points.
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Figure 2. Numbering of interpolation points.

The virtual force at a virtual point is obtained using the feed-back expression given in Equation
(1). Then the e�ect of the virtual force acting on the virtual point is spread back to the adjacent
grid points by volume-weighted extrapolation

Fm=
1
Nb

Nb∑
n=1
Nm(xs)Fn(xs) (5)

where Nb is the number of the virtual points that a�ect the grid point. It should be noted that
the virtual force on body surface is obtained using Goldstein’s feed-back expression rather
than Fadlun’s momentum force. The expression of Fadlun’s momentum force contains the �rst
and second order derivatives of physical properties and a few more grid points are needed
for the construction of �nite di�erence equations, which will in�uence the resolution in the
boundary layer region.
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Figure 3. Time histories of l2-norm error for the simulation of a single cylinder: (a) dashed
line: case with internal virtual force; solid line: case without internal virtual force; (b) solid
line: �=−40000, �=−600; dashed line: �=−4000, �=−600; dashdotted line: �=−4000,

�=−60; dashdotdotted line: �=−400, �=−60.

In their computations, Goldstein and Fadlun imposed the virtual force only at the boundary;
thus, unphysical �uid motion was allowed inside the body. In our test cases, if the virtual
force was introduced only on the surface, no converged solution was achieved for large
Reynolds number �ow. For the remedy of this problem, we impose the momentum force,
given in Equation (2), at the grid points inside the body directly; no interpolation or extrapo-
lation is needed in this procedure. Due to the perfect behaviour of Fadlun’s expression men-
tioned previously, the computational performance has come to a considerable improvement.
Figure 3(a) gives the time histories of the l2-norm error for two 2D cases, i.e. the �ow past
a single cylinder without and with internal virtual force. The l2-norm error in the streamwise
velocity is de�ned as

l2-norm=

√
1
Nb

Nb∑
n=1
un(xs) ∗ un(xs) (6)

In Figure 3(a), the solid line denotes the case with virtual force computed only on the
boundary, the dashed line for the case with internal virtual force. It is clear that the latter
case brings the �uid near boundary to rest more rapidly. Consider the time histories of the l2-
norm error under di�erent combinations of � and � (see Figure 3(b)), �=−4000 and �=−60
are applied in all the following computations which can de�ne a su�ciently precise boundary
and allow a reasonable CFL number as well. For all the results provided in Section 4, the
Goldstein’s approach is utilized to model the no-slip boundary and the Fadlun’s momentum
force expression is imposed at the grid point within the body.

2.2. Solution of governing equations

The non-dimensional Navier–Stokes equations for incompressible viscous �ow are written as

∇ ·V=0
DV
Dt

=−∇p+ 1
Re

∇2V+ F (7)
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where F=(Fx; Fy; Fz) is the virtual force vector. The diameter D is used as the length scale
and the uniform free-stream velocity is the characteristic velocity.
A rectangular computational domain is designed. A free-stream velocity condition is used at

the in�ow and far-�eld boundaries. A nonre�ecting condition is used at the out�ow boundary.
A pressure Neumann condition is applied to in�ow, far �eld and out�ow boundaries and there
is no pressure condition needed for the no-slip boundary. The initial �ow �eld is at rest.
The momentum equations are solved using a �nite di�erence method with implicit treat-

ment of the convection and di�usion terms. The pressure variable is solved from the pressure
Poisson equation which is derived by applying the divergence operator to the momentum
equations. The time-dependent term of the pressure Poisson equation is handled by Harlow’s
method [12]. To satisfy the compatibility condition, the pressure condition is evaluated at
half-grid points near boundary [13, 14]. The spatial derivatives in governing equations are
discretized by second-order central di�erence. The present computation was done using Carte-
sian grid, and a collocated arrangement of variables. But unlike the SIMPLE algorithm for
collocated grid which apply momentum interpolation to avoid check-board phenomenon, the
author achieved smooth solution by directly discretizing the pressure Poission equation using
central second-order �nite scheme. And a continuity correction was done by partially consid-
ering the contribution of the discrete pressure equation derived from the discrete momentum
equations.
The �nally obtained algebraic equations system can be formally written as

CWui−1; j; k + CEui+1; j; k + CSui; j−1; k + CNui; j+1; k + CBui; j; k−1 + CTui; j; k+1 + CCui; j; k

=
u0i; j; k
�t

− pi+1; j; k − pi−1; j; k
2�x

+ Fx

CWvi−1; j; k + CEvi+1; j; k + CSvi; j−1; k + CNvi; j+1; k + CBvi; j; k−1 + CTvi; j; k+1 + CCvi; j; k
(8)

=
v0i; j; k
�t

− pi; j+1; k − pi; j−1; k
2�y

+ Fy

CWwi−1; j; k + CEwi+1; j; k + CSwi; j−1; k + CNwi; j+1; k + CBwi; j; k−1 + CTwi; j; k+1 + CCwi; j; k

=
w0i; j; k
�t

− pi; j; k+1 − pi; j; k−1
2�z

+ Fz

pi+1; j; k − 2pi; j; k + pi−1; j; k
�x2

+
pi; j+1; k − 2pi; j; k + pi; j−1; k

�y2
+
pi; j; k+1 − 2pi; j; k + pi; j; k−1

�z2

=−
(
�i+1=2; j; k − �i−1=2; j; k

�x
+
�i; j+1=2; k − �i; j−1=2; k

�y
+
�i; j; k+1=2 − �i; j; k−1=2

�z

)

+
Di; j; k
�t

+
@Fx
@x

+
@Fy
@y

+
@Fz
@z

(9)
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where

CW =− u∗

2�x
− 1
Re�x2

; CE =
u∗

2�x
− 1
Re�x2

CS =− v∗

2�y
− 1
Re�y2

; CN =
v∗

2�y
− 1
Re�y2

CB =− w∗

2�z
− 1
Re�z2

; CT =
w∗

2�z
− 1
Re�z2

CC =
1
�t
+

2
Re�x2

+
2

Re�y2
+

2
Re�z2

Di; j; k = �xui; j; k + �yvi; j; k + �zwi; j; k

�i; j; k = (ui; j; k�x + vi; j; k�y + wi; j; k�z)ui; j; k

�i; j; k = (ui; j; k�x + vi; j; k�y + wi; j; k�z)vi; j; k

�i; j; k = (ui; j; k�x + vi; j; k�y + wi; j; k�z)wi; j; k

Here (�x; �y; �z) represent the central second-order �nite di�erence approximations for the
�rst-order derivatives. It should be noted that u∗; v∗; w∗ contained in the coe�cients, i.e. the
nonlinear terms of the momentum equations, are updated every iteration to achieve a more
accurate time-dependent solution.

2.3. Local mesh re�nement

To precisely solve the boundary layer, a local mesh re�nement technique is designed in
our code. The grid system suited for a local mesh re�nement method is presented in
Figure 4. First, the full computational domain is equally spaced with the same grid size in three
directions, i.e. �x=�y=�z=0:05. Then the local mesh re�nements are carried out by a

coarser level

finer level

 

Figure 4. Local re�nement grid system used in present study.
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�ner grid level covering a cuboid sub-region wherein the two bodies are contained. The grid
size of the �ner grid level is set to be 0.025. The size of the sub-domain covered by the �ne
grid layer is (L+ 2)× 2× 2, where L is the gap between the two spheres.
The full-approximation-storage (FAS) multigrid method [15] is applied to the re�nement

level in our code. The FAS algorithm in which the full solution is calculated at all levels is
specially suited for the solution of nonlinear partial di�erential equations. This is di�erent from
other multigrid algorithms which calculate residuals and corrections instead of the full solution
at coarser grid levels. For the present local re�nement multigrid, the coarse-grid correction
is performed only at the �ner grid level of the sub-region containing the two bodies, while
in the other sub-regions with coarser grid levels the discrete governing equations are solved
directly to achieve the �ow �eld. It should be taken into account that the interior boundaries
of the re�nement level are not the physical boundaries of the computational domain and no
corresponding conditions can be de�ned. In order to couple the calculated data in di�erent
regions, the �ow values at interior boundaries of the �ner grid level are interpolated linearly
from the coarser level.
A complete local re�nement multigrid cycle marching a time step is given as follows:

(1) Obtain the values at interior boundaries of the �ner level by a linear interpolation.
(2) Calculate di�erence equations given in Equations (8) and (9) at the �ner grid level

containing two bodies. For the sake of simplicity, we rewrite the di�erence equations as

Lhuu
h =fhu

Lhvv
h =fhv (10)

Lhww
h =fhw

Lhpp
h =fhp

where the symbol L(·)(·) denotes the nonlinear operator of the governing equations and

f(·)(·) is the source term. The superscript ‘h’ denotes the variable for �ner grid level.
(3) Successively, in the sub-region containing two bodies, we achieve solution at the

coarser grid level which is overlapped with the �ner grid level. The equations ap-
plied here have a little di�erence from these in the �rst step. The values of physical
properties needed in the source terms are interpolated from the �ow �eld values in �ner
level, which is called a restriction process. The corresponding di�erence equations are
given in Equation (11).

L2hu u
2h =f2hu =L2hu I

2h
h u

h + I2hh (f
h
u − Lhuuh)

L2hv v
2h =f2hv =L2hv I

2h
h v

h + I2hh (f
h
v − Lhvvh) (11)

L2hw w
2h =f2hw =L2hw I

2h
h w

h + I2hh (f
h
w − Lhwwh)

L2hp p
2h =f2hp =L2hp I

2h
h p

h + I2hh (f
h
p − Lhpph)

where I2hh is a operator which de�nes the restriction process mentioned above.
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(4) A correction process (Equation (12)) is performed in the sub-region where two grid
levels overlap.

uh = uh + Ih2h(u
2h − I2hh uh)

vh = vh + Ih2h(v
2h − I2hh vh) (12)

wh =wh + Ih2h(w
2h − I2hh wh)

ph =ph + Ih2h(p
2h − I2hh ph)

where Ih2h is a prolongation operator which transferring data from coarser grids to �ner
grids. Here, a linear interpolation is used for the prolongation.

(5) Calculate di�erence equations given in Equations (8) and (9) in other sub-regions
where no �ner grids exist. The above computational cycle repeats until a steady or a
periodic solution is achieved.

For restriction the �ow values at coarser grid level are computed using a seven-points
interpolation from the �ner grid level, e.g.

u2hi; j; k =
1
12(6u

h
2i−1;2j−1;2k−1 + u

h
2i−2;2j−1;2k−1 + u

h
2i;2j−1;2k−1

+uh2i−1;2j−2;2k−1 + u
h
2i−1;2j;2k−1 + u

h
2i−1;2j−1;2k−2 + u

h
2i−1;2j−1;2k) (13)

and similarly for values of v; w; p. The same restriction operator has been used for the residuals
of Equation (11).

3. PARAMETER REQUIREMENT AND CODE VALIDATION

A cuboid domain containing two spheres placed in a tandem arrangement is solved. The
width and height are 10:0D and the computational domain has a small blockage ratio of
about 1.0%. The distance from the inlet to the centre of the left sphere is 3 diameters, 12
diameters between the centre of the right sphere and the outlet. Due to the existence of a body,
the perturbation decay away from the body at a rate of 1=r3 (see Reference [16], where r is
the distance from the centre of the body. Hence, it is appropriate that a boundary condition
with a free stream velocity of u=1 is applied to the inlet and the outer transverse boundaries.
Because we mainly focus on the physical behaviour of the near wake, the downstream extent
of the computational domain is limited to 12 diameters. Two or three wake cycles can be
well computed in the downstream �ow �eld with the present dimension. As a remedy of this
shortcoming resulted from the de�cient extent in the x direction, a nonre�ecting condition
is applied to the out�ow boundary, i.e. @u=@t + uaver@u=@n=0, where uaver is the averaged
streamwise velocity obtained at outlet.
Extensive experiments have proved that the boundary layer on sphere does not become

turbulent until a large Re of the order 105 is reached. Hence, the estimate of the boundary layer
thickness for low Re (6300) �ow can be performed according to the laminar boundary layer
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theory, i.e. � ≈ 1:10
√
1=Re. That is to say, the present �ner grid level (�x=�y=�z=0:025)

containing the two bodies can well solve the boundary layer.
In order to test the time accuracy of our code, the �ow past a single sphere at Re=275

is computed. The calculation with a time step of 0.01 marched until a single-frequency �ow
is obtained and then the calculation continued with a reduced time step of 0.005 (Figure 5).
The di�erence between the two values of St is less than 0.1% which is negligible and the
time step 0.01 is chosen for all the simulations with CFL=0:4 for the �ner grid level.
To this stage, the computational parameters have been chosen appropriately and the �ow of a

single sphere is solved for a series of Reynolds numbers to validate the code. Figure 7 presents
the wake structures at a few typical Reynolds numbers. In present study, the calculated vortical
structure is visualized using the de�nition of a vortex as a connected region containing two
negative eigenvalues of the S2+�2 tensor (here S and � are, respectively, the symmetric and
antisymmetric parts of the velocity gradient tensor) proposed by Jeong and Hussain [17] (the
same below). From Figure 7 two bifurcations are well captured and the two Reynolds numbers
of transitions (200¡Rec1¡225; 250¡Rec2¡275) compare well with the experimental results.
The wake length is given as a function of Re in Figure 6 along with the available numerical
[18] and experimental [1] data. The present wake length appears to follow an approximately
logarithmic relationship with the Reynolds numbers considered here. In the �rst section, it
was mentioned that Taneda reported the wake unsteadiness at about Re=130 which has not
been successfully repeated by the other simulations and experiments. This fact results in the
distinct discrepancy in Figure 6. Additionally, from the extrapolated curve (denoted by dotted
line), we know that the recirculation bubble does not occur until a Re of about 25.
In order to examine the unsteady force behaviour at a Reynolds number of 275, three

components of the force vector acting on the sphere are de�ned, i.e. the drag CD, the lateral
and side force CL and CS. The side force is de�ned for the force normal to the �ow symmetry
plane. The lateral force is parallel to the symmetry plane. It is found that CS is always zero.
At the Reynolds number of 275, the computed average values of CD and CL are 0.66 and

Figure 5. St number for di�erent time increments.
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Figure 6. Wake length vs Re.

Figure 7. Wake structure for �ow of a single sphere with di�erent Reynolds numbers: (a) Re=200;
(b) Re=225; (c) Re=250; and (d) Re=275.

0.061, with respective oscillation amplitudes of 0.0026 and 0.014. Johnson and Patel [4] have
given the corresponding results of CD =0:656 and CL =0:069 at a Reynolds number of 300.

4. WAKE STRUCTURES AT VARIOUS SPACING RATIOS

The e�ect of the spacing ratio on the �ow past two spheres is studied in this section. The 3D
sketch of the physical model is provided in Figure 8. A few interesting regimes of interaction
are observed depending on the spacing ratio L=D, where L is the distance between the centres
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Figure 8. The 3D sketch of the physical model.

Figure 9. Flow �eld for L=D=1:5: (a) streamlines; and (b) pressure contours.

of the two spheres. The numerical results are presented in the following sub-sections. All the
computations are carries out at a Reynolds number of 250.

4.1. Axisymmetric steady �ow

From the experimental result for the �ow of a single sphere, we know the �rst transition Re
is about 210 over which the axisymmetric behaviour of the �ow is lost. But for the case of
two spheres with a small spacing ratio (L=D=1:5), the computation will �nally come to an
axisymmetric �ow at Re=250. From the contours of pressure for �ow of a single sphere at
Re=250 (see Figure 14 in Reference [4]), we know that the vortex ring in the near wake
contains a global pressure minimum in the vortex centre. Therefore, if another sphere is placed
within the region of the vortex ring, i.e. the case of two spheres with a small spacing ratio,
the instability connected to the ring of low pressure in the wake will be eliminated and the
�ow has a tendency to restore the axisymmetric behaviour.
From Figure 9(a), a vortex ring with a cross plane of symmetry is embedded in the gap, no

reattachment point at the central line. For this upstream vortex ring, the separation angle � is
56:9◦ (note: the separation angle is measured from the rear stagnation point of each sphere),
the distance between the two vortex-centres l is 0.86 and the distance between the vortex
centre and the rear stagnation point d is 0.29. The corresponding values for the downstream
bubble are �=48:0◦, l=0:62, d=0:37, respectively. Pressure coe�cient contours are given
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in Figure 9(b). The contours are plotted for every 0.02 increment, with the dashed lines used
for the negative values. There is no pressure minimum in either the upstream wake or the
downstream wake. That is to say, for the �ow with small spacing ratio less that 1.5, the
centrifugal force of the vortex’s rotation is mainly balanced by the viscous force.

4.2. Plane-symmetric steady �ow

As the spacing ratio increases to 2.0, a steady but nonaxisymmetric �ow is computed after a
large number of time steps. The computed �ow now is characterized with a plane of symmetry.
The location of the plane of symmetry is determined only by the nonphysical factor of

the numerical method applied. The �ow past spheres with large enough spacing ratio is
unstable. For simulations, the numerical disturbance introduced by the computation will induce
the instability. But the actual position of the plane of symmetry cannot be predicted by the
governing equations, in advance. From the calculations of the other CFD researchers and the
authors, we knew that the position was determined by the direction of grid lines, the sweeping
direction, the algorithm and the special programming code. In present computation, the plane
of symmetry coincides with the plane 45◦ o� the x–y coordinate plane.
The projected streamlines on the two planes, one 45◦ o� the x–y coordinate plane (denoted

by Pxy1) and the other −45◦ o� x–y coordinate plane (denoted by Pxy2), are drawn in
Figure 10(a) and 10(b), respectively. Due to the out-of-plane velocity components, the stream-
lines constructed in the Pxy2 (Figure 10(b)) are not the real 3D streamlines. This can be

Figure 10. Streamlines for L=D=2:0: (a) view on plane with an angle of 45◦ from x–y coordinate
plane; and (b) View on plane with an angle of −45◦ from x–y coordinate plane.
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Figure 11. Particle lines for L=D=2:0.

deduced from the fact that the size of the upstream vortex ring is not kept constant in the
circumferential direction. Unlike the vortex rings of the case with a spacing ratio 1.5, the
present vortex rings are no longer closed separation bubbles; in fact, the �uid transportation
in circumferential direction is observed in Figure 11.
Figure 11 gives the paths of a pair of particles originated from the rear of left and right

spheres. The circumferential motion of the �uid is clearly observed. The pathline of the
particle released from the rear stagnation of the left sphere spirals clockwise into the lower
focus of the near wake and then feeds into the upper focus, where it spirals clockwise outward,
eventually escapes from the focus. The pathline of the particle released from the right sphere
has a similar trace.
Pressure contours on the two planes, i.e. Pxy1 and Pxy2, are plotted in Figure 12 and

the symmetry of the �ow �eld is observed again. Now the pressure minimum occurs in the
region of the upstream vortex ring and the value of the minimum varies slightly along the
circumferential coordinate. It can be deduced that this circumferential pressure gradient induces
the circumferential motion of �uid. The pressure gradient in the downstream near wake is
faint compared to the upstream one, but the circumferential motion of �uid has been captured
in the same way (Figure 11).

4.3. Unsteady �ow

As the spacing ratio increases to L=D=2:5, the periodically oscillating �ow is computed.
No attempt is made to further narrow the interval of the onset of the transition, due to the
expensive computation.

4.3.1. Detail �ow visualization at L=D=3:0. The case for L=D=3:0 is picked up as an exam-
ple to give a detail investigation for the unsteady �ow of two spheres in tandem arrangement.
The shedding process of the wake in a full cycle is clearly illuminated in Figure 13. A plane
of symmetry which is actually the plane Pxy1 mentioned previously persists through the com-
plete unsteady shedding process. In the gap, a side-shedding pattern occurs like the case of a
single sphere. At t=0, a structure exists at the rear of the left sphere with its head part cap-
tured by the right sphere. At t= 1

4T , a new generated structure can be seen protruding from
the head part of the structure in the gap along the streamwise direction. The new structure
breaks away from the parent body and develops to a full hairpin-shaped structure at t= 2

4 T .
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Figure 12. Contours of pressure for L=D=2:0: (a) view on plane with an angle of 45◦ from x–y
coordinate plane; (b) view on plane with an angle of −45◦ from x–y coordinate plane.

Then the newly formed structure begins to transfer downstream. So one of the two vortical
structures existing in the far �ow �eld originates from the head part of the structure in the
gap. Another vortical structure originates from the upside of the rear of the right sphere. It is
interesting that the shedding process of the latter one structure is �nished in a time of about
1
2T ( 34 T -¿

7
8 T -¿0-¿

1
8 T ), i.e. a half of the shedding period of the former one structure,

which is revealed by the spectra of the �ow �eld (Figure 18) where two harmonies fs and
2fs exist (fs = 1=T ). While, in the other time slices of a cycle, the wake structure in the
upside of the right sphere goes on with only a little change.
From the iso-surface of streamwise vorticity given in Figure 14 (the positive and negative

values are denoted by white and black colours, respectively), it is known that the body of
the vortical structure is composes of two vortical tubes with di�erent rotational directions. In
Figure 14, the head of the vortical structure originating from the upside of the right sphere
is not identi�ed as a vorticity region and the shedding with the harmony of 2fs is not clearly
observed.
To deeply understand the �uid motion, the topology of the cross �ow in each of the

eight sections denoted in Figure 13(a) is presented in Figure 15. The extent of the sphere’s
perimeter is indicated by the dashed circle. For two constant x planes in the near wake of the
left sphere and right sphere, respectively, the streamlines constructed from y and z velocity
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Figure 13. Wake structures in a cycle for L=D=3:0: (a) Pxy1 plane; and (b) Pxy2 plane.

components are plotted in Figure 15(a) and 15(c). The contours in Figure 15(a) and 15(c)
constitute two nodes, respectively, one is unstable and the other is stable. The steamlines
near the projected perimeter of the sphere become curved due to the induced velocity in this
region. The whirling motion of the body part of the vortical structure in the gap is evident
in Figure 15(b) where two stable focuses with di�erent spiral directions exist. The similar
�ow topology is seen in Figure 15(g) for the body part of the structure which is shed from
the lower side of the right sphere. For the structure which originates from the upper side of
the right sphere, no evident whirling motion indicated by the contours of stream-function is
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Figure 14. Oblique views of the iso-surface of !x in a cycle for L=D=3:0.

Figure 15. Flow topology on eight typical cross sections for L=D=3:0: (a) section-A; (b) section-B;
(c) section-C; (d) section-D; (e) section-E; (f) section-F; (g) section-G; and (h) section-H.

observed on the cross section of the body part; but it is identi�ed as a vortical region by Jeong
and Hussain’s method. Figure 15(e) and 15(f) provide information on the �ow behaviour in
the region of the tail of the wake structure shed from the lower side of the right sphere and
the head of the structure from the upper side. The tail of the structure from the lower side is
characterized by a pair of closed stable focuses connected with a saddle point. But the head
of the structure from the upper side does not contain any focus yet. The cross �ow further
downstream is presented in Figure 15(h) and the focuses corresponding to the structure from
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Figure 16. Instantaneous streamlines in a cycle for L=D=3:0.

the lower side are observed to move down to the lower part of Figure 15(h) compared with
their positions in Figure 15(g).
To further investigate the �ow behaviour, the instantaneous streamlines in the plane of

symmetry (the plane denoted by Pxy1) are given sequentially in a period (Figure 16) and
the instability behaviour of the �ow topology during the shedding process can be clearly
obtained. In the upper side of the gap, an unstable focus captures both the two spheres and
the unstable behaviour holds in the full period. In the lower side of the left sphere, a stable
focus appears at the beginning of a period. At t= 1

4T , this focus evolves into a limit cycle
onto which streamlines converge from both sides. The appearance of the limit cycle indicates
the shift of the focus from stable to unstable. At the next quarter, there is an unstable focus
on the lower side of the left sphere and the limit cycle is not present anymore. For the wake
of the right sphere, the two rings are stable and unstable, respectively, in the �rst half period.
In the second half period, an unstable focus is present in the upper side and a stable one in
the lower side, instead.
The topology of the limiting streamlines over the rear of the two spheres is plotted in

Figure 17. The limiting �ow behaviour of the left sphere is similar to that of the case of a
single sphere. That is to say, the separation line of the left sphere remains essentially stationary
along the full period and the change of the position of the stagnation point is hardly noticed.
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Figure 17. Rear surface-limiting streamlines in a cycle for L=D=3:0: (a) every quarter period for left
sphere; and (b) every quarter period for right sphere.

But it is not the case for the right sphere. The position of the saddle point on the separation
line of the rear of the right sphere changes alternatively in a period, in top side for the �rst
half period and in bottom side for the second half period.

4.3.2. Dynamic behaviour for various spacing ratios. In our computation, two monitors are
arranged along the x-axis in the upstream wake and the downstream wake: one is placed in
the midplane of the gap and the other in the plane with two diameters from the second sphere.
The �ow spectra of the wake are determined from the streamwise velocity �uctuation of the
monitor point by an FFT technique. Figure 18 provides the spectra for the spacing ratios
ranging from 2.5 to 4.5. At L=D=2:5, a faint wavy �ow is detected in the wake. The weakly
oscillating upstream wake has a shedding frequency of fs = 0:12. The shedding frequency
fs = 0:12 can also be detected in the spectra of the downstream wake. Furthermore, a 2fs
harmony is noticeable in the downstream spectra, though its amplitude is smaller than the
dominated frequency fs. From previous study, it is known that the fs frequency component
in the downstream spectra corresponds to the vortex shedding from the lower side of the
right sphere, the 2fs harmony corresponding to the shedding from the upper side of the right
sphere. The spectra contains of the upstream wake have little di�erence between various
spacing ratios. But the 2fs harmony in the downstream spectra is enhanced with the increase
of the spacing ratio. With a small increment of 0.5 from L=D=3:0 to L=D=3:5, the 2fs
harmony begins to play the dominated role in the spectra. Hence, a critical spacing ratio
(L=D)cr is thought to exist in the interval between 3.0 and 3.5. In the two sides of the
critical spacing ratio, the two structures with di�erent shedding frequencies have di�erent
intensity.
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Figure 18. Flow spectra in wakes (left column corresponds to the upstream wake and
right column for the downstream wake).
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Figure 19. (a) Mean streamwise velocity along the axis; and (b) RMS
streamwise velocity along the axis.

The streamwise velocity along the central line of the domain for the average �ow is plotted
in Figure 19(a) and the same plot for the streamwise RMS velocity in Figure 19(b). The
hatched circle zone denotes the position of the right sphere. The values of the average velocity
on the central line in the gap are found to be negative for spacing ratio L=D 6 3:0. As the
spacing ratio increases to 3.5, a small region with positive average velocity appears abruptly in
the gap, which indicates that the recirculation region is no longer captured by the right sphere.
At larger spacing ratio (L=D=4:5 or 5.0), the average velocity is positive in a broader region
near the right sphere. For L=D=5:0, the two regions with negative and positive velocity are
symmetric about the midplane of the gap. While for the near wake of the right sphere, there
is little di�erence between the curves of average velocity at various spacing ratios. The end
of the recirculation region along the axis is at 1.227 diameters downstream from the rear of
the right sphere. The experimental value of the extent of the recirculation region is 1.337 for
the �ow past a single sphere at Re=280 provided by Wu and Faeth [19].
In Figure 19(b), it is revealed that the maximum RMS value in the central line is less

than 10% of the freestream velocity. From the RMS plot, we can judge that there is a violent
wake region which is very close to the front of the right sphere in the gap. For each spacing
ratio, there are two local maximum RMS values in the gap and in the downstream wake,
respectively. The two maximum values grow slowly as the spacing increases and come to the
peak values at about L=D=3:0 which is the critical spacing ratio mentioned previously.
Figure 20 gives the streamlines in the plane of symmetry at L=D=3:5. It is clear that in

current spacing ratio, the vortex ring in the gap is no longer captured by the right sphere and
the transverse motion of �uid across the gap becomes evident. More upstream streamlines
pass through the gap, directly �ow around the right sphere, and eventually join into the
downstream �ow. The �ow given in Figure 20 is consistent with the average velocity curves
in Figure 19(a) where the region with positive velocity begins to occur in the gap at about
L=D=3:5.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:465–488



486 J.-F. ZOU, A.-L. REN AND J. DENG

Figure 20. Streamlines for L=D=3:5.

Figure 21. Wake structure for large gaps: (a) view in Pxy1 plane for L=D=6:0;
and (b) view in (x; y) plane for L=D=7:0.

For spacing ratio larger than 6 diameters, only a very weak coupling is observed, leading
to the disappearance of the hairpin-shaped vortex in the gap (see Figure 21(a)). At L=D=7:0,
the whole �ow �eld is characterized by two stable double-threads vortical structures in the gap
and in the downstream wake (see Figure 21(b)). This indicates that the two spheres with a
gap larger than seven diameters act as a single sphere, respectively. Comparing the two plots
in Figure 21, we notice that as the �ow returns to be stable, the position of the symmetrical
plane has a change of an angle of 45◦.

5. CONCLUSION

In this paper, the virtual boundary method provided by Goldstein has been extended to a
3D application and combined with a local mesh re�nement method and the computational
performance has come to a distinct improvement. Then the �ow �eld of two spheres in
tandem arrangement for a series of gaps is investigated for Re=250.
Due to complicated coupling between two spheres, a few interesting �ow regimes are

revealed, i.e. the axisymmetric �ow at L=D=1:5, the steady �ow with a plane of symmetry
at L=D=2:0 and the periodic �ow for L=D¿2:5. The present categories show a reasonable
agreement with Yutaka’s experimental study for the �ow of two spheres at Re=220. In
Yutaka’s results, an asymmetric �ow is obtained at L=D=1:65 and an intermittent vortex
shedding starts at a spacing ratio of about 2.56. In our numerical study, because of the
expensive computational cost, the transitional spacing ratio has not been achieved in a narrower
interval.
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The disharmonic shedding phenomenon is clearly revealed in the �ow spectra and a critical
spacing ratio is found between 3.0 and 3.5. When the spacing ratio is beyond the critical
value, the streamlines become smoother near the lower side of the right sphere, which leads
to the vortex structure from the upper side of the right sphere has more powerful intensity
than the one from the lower side. But no distant frequency hopping occurs due to the critical
spacing ratio, so this critical value is actually a ‘regular spacing ratio’. This is not the case for
the critical spacing ratio of the �ow of two cylinders. As the gap between the two cylinders
increases to the critical value, the left cylinder begins to shed vortices suddenly and the
shedding frequency of the downstream cylinder presents an abrupt change.
As the spacing ratio increases from 6 diameters to 7 diameters, the direction of the sym-

metrical plane has a change of an angle of 45◦. This interesting phenomenon of the ‘jump’
remains to be a question. The author suppose that it should imply a certain transition between
the two diameters, because numerical conditions for all simulations with various gaps remain
the same and no unphysical factors will be introduced into the computation. The author will
do more work for this question in the future.
It should be noted, the virtual boundary method cannot precisely de�ne the physical bound-

ary or surface, i.e. the boundary in this method has a thickness of about 0:025D (the increment
of the �ner grid level) in e�ect.
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